Burger, Scott V
자료유형 | 단행본 |
---|---|
서명/저자사항 | Introduction to machine learning with R : rigorous mathematical analysis / Scott V. Burger |
개인저자 | Burger, Scott V. |
발행사항 | Sebastopol, CA : O'Reilly, 2018. |
형태사항 | ix, 212 p. : ill. ; 24 cm. |
ISBN | 9781491976449 1491976446 |
서지주기 | Includes bibliographical references and index. |
요약 | Machine learning can be a difficult subject if you're not familiar with the basics. With this book, you'll get a solid foundation of introductory principles used in machine learning with the statistical programming language R. You'll start with the basics like regression, then move into more advanced topics like neural networks, and finally delve into the frontier of machine learning in the R world with packages like Caret. By developing a familiarity with topics like understanding the difference between regression and classification models, you'll be able to solve an array of machine learning problems. Knowing when to use a specific model or not can mean the difference between a highly accurate model and a completely useless one. This book provides copious examples to build a working knowledge of machine learning. Understand the major parts of machine learning algorithms Recognize how machine learning can be used to solve a problem in a simple manner Figure out when to use certain machine learning algorithms versus others Learn how to operationalize algorithms with cutting edge packages. |
일반주제명 | R (Computer program language) Statistics --Data processing. |
분류기호 | 006.31 |
언어 | 영어 |
서평 (0 건)
*주제와 무관한 내용의 서평은 삭제될 수 있습니다. 한글 기준 10자 이상 작성해 주세요.
서평추가